
1 Introduction
The LPC55(S)xx is an Arm® Cortex®-M33 based micro-controller for
embedded applications. These devices include:

• Up to 320 KB of on-chip SRAM

• Up to 640 KB on-chip flash

• High-speed and full-speed USB host and device interface with crystal-
less operation for full-speed

• Five general-purpose timers

• One SCTimer/PWM

• One RTC/alarm timer

• One 24-bit Multi-Rate Timer (MRT)

• One Windowed Watchdog Timer (WWDT)

• Eight flexible serial communication peripherals (each of which can be a USART, SPI, I2C, or I2S interface)

• One 16-bit 1.0 Msp ADC

• Temperature sensor.

The Arm Cortex- M33 provides a security foundation, offering isolation to protect valuable IP and data with TrustZone® technology.

In addition to the information available in the LPC55(S)xx Data Sheet and User Manual. This application note provides the basic
introduction of LPC55(S)xx Dual-DMA, the registers required to configure to use specified channel, the configuration steps based
on SDK, hardware platform and program verification.

2 LPC55(S)xx DMA Introduction

2.1 DMA Introduction
DMA: Direct memory access (DMA) use provides high-speed data transfer between memory and memory or between peripherals
and memory. DMA quickly moves the data is without any CPU action. This keeps CPU resources free for other operations.

DMA only provides data transferring function and its transmit efficiency maybe not good as MCU Core.

 NOTE

DMA channel: Each DMA channel supports one DMA request line and one trigger input.

Example: Both USART0_RX and USART0_TX can be ‘request input’ and produce ‘request’ signal. The ‘request signal’
produced by a specific peripheral is connected to a DMA channel. User should follow ‘DMA requests Table’ to configure
corresponding channel.

Possible DMA usage:

Contents

1 Introduction......................................1
2 LPC55(S)xx DMA Introduction........ 1
2.1 DMA Introduction......................... 1
2.2 Dual DMA block overview............2
2.3 Basic configuration of DMA block

...2
3 DMA configuration API....................5
3.1 DMA configuration API lists......... 5
3.2 Data API example........................7
4 DMA verification............................ 11
4.1 Hardware design........................12
4.2 Software set-up..........................13
4.3 Program verification...................14
5 Conclusion.....................................15
6 Revision history.............................15

AN12351
LPC55(S)xx Dual-DMA Usage
Rev. 2 — 10/2020 Application Note

Table 1. DMA Transfer mode

DMA transfer mode Source Destination

Memory to Memory AHB Memory Port AHB Memory Port

Memory to Peripheral AHB Memory Port AHB Peripheral Port

Peripheral to Memory AHB Peripheral Port AHB Memory Port

2.2 Dual DMA block overview
• DMA controller: Two instances of SDMA IP that the user can decide which one is secure or not.

• DMA0: 22 channels, with multiplexers for 22 trigger sources. Each Flexcomm Interface provides a DMA RX and a DMA TX
request to the DMA controller. The ADC is connected to 2 different DMA request channels. SCT and selected timers and pin
interrupts are also used as DMA triggers. In addition, four DMA triggers are selected from among all of the DMA channel output
triggers. SHA-2 and AES also provides DMA channel and trigger interface.

• DMA1: 10 channels with multiplexers for 15 trigger sources.

• Priority is user selectable for each channel (up to eight priority levels).

• Continuous priority arbitration.

• Supports single transfers up to 1,024 words.

• Address increment options allow packing and/or unpacking data.

2.3 Basic configuration of DMA block
This section descibes the DMA block diagram.

NXP Semiconductors
LPC55(S)xx DMA Introduction

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 2 / 16

2.3.1 DMA block diagram description

Figure 1. DMA block diagram

DMA requests are directly connected to the peripherals. Each channel supports one DMA request line and one
trigger input. Some DMA requests allow a selection of requests sources. DMA triggers are selected from many
possible input sources.

 NOTE

2.3.2 DMA requests and trigger multiplexers
DMA requests are intended to pace transfer to match what the peripheral (including its FIFO if it has one) can do, then DMA
triggers start the transfer, user can choose software trigger or hardware trigger depend on the design requirements.

The requests and trigger muxes for DMA0 and DMA1 are shown in the DMA0 requests and trigger multiplexers table.

Table 2. DMA0 requests and trigger multiplexers

DMA channel Request input DMA trigger MUX

0 Hash-Crypt DMA request DMA0_ ITRIG_ INMUX0

1 Spare channel, no request connected DMA0_ ITRIG_ INMUX1

2 High Speed SPI (Flexcomm 8) RX DMA0_ ITRIG_ INMUX2

3 High Speed SPI (Flexcomm 8) TX DMA0_ ITRIG_ INMUX3

4 Flexcomm Interface 0 RX / I2C Slave DMA0_ ITRIG_ INMUX4

Table continues on the next page...

NXP Semiconductors
LPC55(S)xx DMA Introduction

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 3 / 16

Table 2. DMA0 requests and trigger multiplexers (continued)

DMA channel Request input DMA trigger MUX

5 Flexcomm Interface 0 TX / I2C Master DMA0_ ITRIG_ INMUX5

6 Flexcomm Interface 1 RX / I2C Slave DMA0_ ITRIG_ INMUX6

7 Flexcomm Interface 1 TX / I2C Master DMA0_ ITRIG_ INMUX7

8 Flexcomm Interface 2 RX / I2C Slave DMA0_ ITRIG_ INMUX8

9 Flexcomm Interface 2 RTX / I2C Master DMA0_ ITRIG_ INMUX9

10 Flexcomm Interface 3 RX / I2C Slave DMA0_ ITRIG_ INMUX10

11 Flexcomm Interface 3 TX / I2C Master DMA0_ ITRIG_ INMUX11

12 Flexcomm Interface 4 RX / I2C Slave DMA0_ ITRIG_ INMUX12

13 Flexcomm Interface 4 TX / I2C Master DMA0_ ITRIG_ INMUX13

14 Flexcomm Interface 5 RX / I2C Slave DMA0_ ITRIG_ INMUX14

15 Flexcomm Interface 5 TX / I2C Master DMA0_ ITRIG_ INMUX15

16 Flexcomm Interface 6 RX / I2C Slave DMA0_ ITRIG_ INMUX16

17 Flexcomm Interface 6 TX / I2C Master DMA0_ ITRIG_ INMUX17

18 Flexcomm Interface 7 RX / I2C Slave DMA0_ ITRIG_ INMUX18

19 Flexcomm Interface 7 TX / I2C Master DMA0_ ITRIG_ INMUX19

20 Spare channel, no request connected DMA0_ ITRIG_ INMUX20

21 ADC0 FIFO 0 DMA0_ ITRIG_ INMUX21

22 ADC0 FIFO 1 DMA0_ ITRIG_ INMUX22

Table 3. DMA1 requests and trigger multiplexers

DMA channel Request input DMA trigger mux

0 Hash-Crypt DMA request DMA1_ ITRIG_ INMUX0

1 Spare channel, no request connected DMA1_ ITRIG_ INMUX1

2 High Speed SPI (Flexcomm 8) RX DMA1_ ITRIG_ INMUX2

3 High Speed SPI (Flexcomm 8) TX DMA1_ ITRIG_ INMUX3

4 Flexcomm Interface 0 RX / I2C Slave DMA1_ ITRIG_ INMUX4

5 Flexcomm Interface 0 TX / I2C Master DMA1_ ITRIG_ INMUX5

6 Flexcomm Interface 1 RX / I2C Slave DMA1_ ITRIG_ INMUX6

7 Flexcomm Interface 1 TX / I2C Master DMA1_ ITRIG_ INMUX7

8 Flexcomm Interface 2 RX / I2C Slave DMA1_ ITRIG_ INMUX8

9 Flexcomm Interface 2 RTX / I2C Master DMA1_ ITRIG_ INMUX9

NXP Semiconductors
LPC55(S)xx DMA Introduction

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 4 / 16

Table 4. DMA trigger sources

DMA trigger DMA0 trigger input DMA1 trigger input

0 Pin interrupt 0 Pin interrupt 0

1 Pin interrupt 1 Pin interrupt 1

2 Pin interrupt 2 Pin interrupt 2

3 Pin interrupt 3 Pin interrupt 3

4 Timer CTIMER0 Match 0 Timer CTIMER0 Match 0

5 Timer CTIMER0 Match 1 Timer CTIMER0 Match 1

6 Timer CTIMER1 Match 0 Timer CTIMER2 Match 0

7 Timer CTIMER1 Match 1 Timer CTIMER4 Match 0

8 Timer CTIMER2 Match 0 OMA output trigger 0

9 Timer CTIMER2 Match 1 OMA output trigger 1

10 Timer CTIMER3 Match 0 OMA output trigger 2

11 Timer CTIMER3 Match 1 OMA output trigger 3

12 Timer CTIMER4 Match 0 SCTO OMA request 0

13 Timer CTIMER4 Match 1 SCTO OMA request 1

14 Comparator 0 output Hash-Crypt output DMA

15 DMA output trigger 0 N/A

16 DMA output trigger 1 N/A

17 DMA output trigger 2 N/A

18 DMA output trigger 3 N/A

19 SCT0 DMA request 0 N/A

20 SCT0 DMA request 1 N/A

21 Hash-Cryptoutput DMA N/A

3 DMA configuration API
This section lists the DMA configuration APIs and provides Data API examples.

3.1 DMA configuration API lists
DMA registers are grouped into DMA control, interrupt, and status registers and DMA channel registers. Each DMA transfer
channel is controlled by a set of registers including CFG[0:29], CTRLSTAT[0:29] and XFERCFG[0:29]. Two DMA controllers are
present: DMA0 and DMA1 (secure).

This chapter describes how to configure related registers using API without changing the SDK driver and let users use DMA
function easily, the main function prototypes are shown in the DMA API calls table.

NXP Semiconductors
DMA configuration API

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 5 / 16

Table 5. DMA API calls

Function prototype API description

void DMA_Init

(DMA_Type *base)

This function enable the DMA clock, set descriptor table and
enable DMA peripheral.

* param base DMA peripheral base address.

void DMA_CreateHandle

(dma_handle_t *handle,

DMA_Type *base,

uint32_t channel)

This function is called if using transaction API for DMA. This
function initializes the internal state of DMA handle.

* param handle DMA handle pointer. The DMA handle stores
callback function and parameters.

* param base DMA peripheral base address.

* param channel DMA channel number.

Void DMA_EnableChannel

(DMA_Type *base,

uint32_t channel)

This function Enable DMA channel.

* param base DMA peripheral base address.

* param channel DMA channel number.

void DMA_SetCallback

(dma_handle_t *handle, dma_callback callback,

void *userData)

This callback is called in DMA IRQ handler. Use the callback to
do something after the current major loop transfer completes.

* param handle DMA handle pointer.

* param callback DMA callback function pointer.

* param userData Parameter for callback function.

void DMA_PrepareTransfer

(dma_transfer_config_t *config, void *srcAddr, void *dstAddr,

uint32_t byteWidth, uint32_t transferBytes,
dma_transfer_type_t type, void *nextDesc)

This function prepares the transfer configuration structure
according to the user input.

* param config The user configuration structure of
type dma_transfer_t.

* param srcAddr DMA transfer source address.

* param dstAddr DMA transfer destination address.

* param byteWidth DMA transfer destination
address width(bytes).

* param transferBytes DMA transfer bytes to be transferred.

* param type DMA transfer type.

* param nextDesc Chain custom descriptor to transfer.

status_t DMA_SubmitTransfer

(dma_handle_t *handle, dma_transfer_config_t *config)

This function submits the DMA transfer request according to
the transfer configuration structure.

* param handle DMA handle pointer.

* param config Pointer to DMA transfer configuration structure.

void DMA_StartTransfer

(dma_handle_t *handle)

This function enables the channel request.

* param handle DMA handle pointer.

NXP Semiconductors
DMA configuration API

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 6 / 16

3.2 Data API example
This section lists Data API example for:

• Memory to memory

• Memory to peripheral

• Peripheral to memory

3.2.1 Memory to memory
1. DMA_Init:

The initial step includes enable the DMA clock, set descriptor table, and enable DMA peripheral.

/** Peripheral DMA0 base address */
 #define DMA0_BASE_NS (0x40082000u)
 /** Peripheral DMA0 base pointer */
 #define DMA0_NS ((DMA_Type *)DMA0_BASE_NS)
 volatile DMA_Type *DMA0_NS_Base = (DMA_Type *)DMA0_NS;
 DMA_Init(DMA0);

2. DMA_CreateHandle

DMA_CreateHandle(&g_DMA_Handle, DMA0, 0);

User can use DMA1. For example, ‘DMA_CreateHandle(&g_DMA_Handle, DMA1, 0)’ means DMA1_Channel0 is
selected as channel transferring data.

 NOTE

3. DMA_EnableChannel:

This function enables the DMA channel. To enable the chosen channel, DMA0_Channel0 selected at Step 2 is used to call
the API.

DMA_EnableChannel(DMA0, 0);

It is worth noting that LPC55(S)xx has two DMA (DMA0 & DMA1), the ‘ struct COMMON[x] ’ should be
‘ COMMON[0] ’ if DMA0 is current chosen DMA. If DMA1 is chosen DMA, the struct is ‘ COMMON[1] ’. The
Register Layout Typedef ‘ DMA_Type ’ has full definition of related registers.

 NOTE

NXP Semiconductors
DMA configuration API

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 7 / 16

Figure 2. DMA_Type introduction

4. DMA_EnableChannel:

This callback is called in DMA IRQ handler. User can get the interrupt A or B flags and monitor whether it is set by the
software using the following API.

DMA_SetCallback(&g_DMA_Handle, DMA_Callback, NULL);

5. DMA_PrepareTransfer:

This function prepares the transfer configuration structure according to the user input. The following code represents that
the user can configure DMA transfer source address, destination address, DMA transfer type, and custom descriptor
according to data transferring requirements.

DMA_PrepareTransfer(&transferConfig,srcAddr,destAddr,sizeof(srcAddr[0]),sizeof(srcAddr),
kDMA_MemoryToMemory,NULL);

The sixth parameter determines whether the source address and destination address should increment or not.
For example, both source address and destination address should increment to copy data between the memory
in order.

 NOTE

config->xfercfg.srcInc = 1;
config->xfercfg.dstInc = 1;
config->isPeriph = false;

6. DMA_SubmitTransfer:

This function submits the DMA transfer request according to the transfer configuration structure. The following code
represents that user can finish DMA transfer configuration by configure structure ’dma_xfercfg_t’ that include reload
channel configuration, perform software trigger and other information.

NXP Semiconductors
DMA configuration API

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 8 / 16

Figure 3. DMA_xfercfg_t instruction

Then user can create specific DMA descriptor to be used in a chain in transfer by using following API.

DMA_StartTransfer(&g_DMA_Handle);

The default value of CFG register bit 1 ‘HWTRIGEN’ is ‘0’. This means Hardware trigger is unused. To trigger a
DMA transfer like Pin interrupt 0, Timer CTIMER0 Match 0 and others using hardware, follow these steps and finish
the extra configuration.

a. CFG register bit 1 ‘HWTRIGEN’ should be set by using the following pseudo code.

Base->CHANNEL[x]. CFG |= 0x2U;

b. XFERCFGn register bit 2 software trigger should be disabled and could wait for hardware trigger signal by
using the following pseudo code.

Base->CHANNEL[x]. XFERCFG |=~ 0x4U

c. User should choose ‘DMA trigger sources’ by configuring register ‘DMA0_ITRIG_INMUX[0:22]’ or
‘DMA1_ITRIG_INMUX[0:9]’. The following pseudo code means we can choose hardware trigger 2 ‘Pin
interrupt 2’ for DMA0_Channlx’s request input.

Base->DMA0_ITRIG_INMUX[x] = 0x2;

 NOTE

With the above configuration of seven main steps, DMA is ready to transfer data. Now user can wait for DMA transfer
finish by monitoring the value of ‘g_Transfer_Done’ which is changed in ‘DMA_Callback’ function.

void DMA_Callback(dma_handle_t *handle, void *param, bool transferDone, uint32_t tcds)
{
 if (transferDone){
 g_Transfer_Done = true;
 }
}
while (g_Transfer_Done != true)
 {}

NXP Semiconductors
DMA configuration API

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 9 / 16

3.2.2 Memory to peripheral
User can transfer data from memory to peripheral. For example, transfer data from RAM to USART0_FIFOWR. The main steps
are similar to instructions in the section Memory to memory except Step 5.

/** Peripheral USART0 base address */
#define USART0_BASE_NS (0x40086000u)
/** Peripheral USART0 base pointer */
#define USART0_NS ((USART_Type *)USART0_BASE_NS)
volatile USART_Type *USART0_NS_Base = (USART_Type *)USART0_NS;
DMA_PrepareTransfer(&transferConfig,srcAddr,
 USART0_NS_Base ->FIFOWR, sizeof(srcAddr[0]),sizeof(srcAddr),
 kDMA_MemoryToPeripheral,NULL);

Considering the Peripheral(USART0_FIFOWR) has its fixed base address: 0x4008 6000h+ 0xE20, so the address
does not increment. If used as ‘Destination data address’, while use Memory(RAM) as ‘Source data address’ and
its address should increment.

 NOTE

/* Peripheral register - destination doesn't increment */
 config->xfercfg.srcInc = 1;
 config->xfercfg.dstInc = 0;
 config->isPeriph = true;

Figure 4. Source address should increment

3.2.3 Peripheral to memory
User can transfer data from peripheral to memory. For example, if the sensor and microcontroller unit are communicating through
USART0 then user can store the data collected by the sensor into Memory by transferring data from USART0_FIFORD to RAM.
The main steps are similar to instructions in the section Memory to memory except Step 5.

1. Register FIFORD bit 0-8 can be used to store received data from FIFO. The number of bits used depends on the DATALEN
and PARITYSEL settings.

2. For example, user can transfer a character in USART0->FIFORD to RAM by using following API to configure
‘DMA_PrepareTransfer’ function.

DMA_PrepareTransfer(&transferConfig, (void *)(&USART0_NS_Base->FIFORD),desAddr, 4, 4,
kDMA_PeripheralToMemory, NULL);

NXP Semiconductors
DMA configuration API

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 10 / 16

Considering the Peripheral(USART0_NS->FIFORD) has its fixed base address: 0x4008 6000h+ 0xE30, so its
address does not increment. If user uses it as ‘Source data address’, while use Memory (RAM) as ‘Destination data
address the address should increment.

 NOTE

/*Peripheral register - source doesn't increment */
 config->xfercfg.srcInc = 0;
 config->xfercfg.dstInc = 1;
 config->isPeriph = true;

Figure 5. Source address increment

4 DMA verification
This application note provides examples to finish DMA transfer work including Memory to memory, Memory to peripheral, and
Peripheral to memory mode. This application note takes LPC55S6x as an example to show the function of Dual DMA.

The following demos are based on the IAR, MCUXpresso IDE platform of NXP is also support. User can download related project
on the LPC55S6x to verify Dual-DMA function. This demo uses the USB Virtual COM (VCOM) to display log information.

NXP Semiconductors
DMA verification

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 11 / 16

4.1 Hardware design

Figure 6. LPCXpresso55S69 EVK

To download and debug the project and view serial port data, user can connect USB port P6 with PC by using USB interface.

NXP Semiconductors
DMA verification

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 12 / 16

Figure 7. Connect LPCXpresso55S69 with PC

4.2 Software set-up
Two IDEs were used to verify the sample DMA projects:

• IAR Embedded Workbench v8.32.1.

• MCUXpresso IDE v10.3.0 (can download from www.nxp.com).

To compile and load the software example using IAR IDE, follow these steps.

• Connect USB port P6 of an LPCXpresso55S69 board to the PC (J3 set to Loc, P4 set to 3.3 V, J6 set to FS)

• Unzip the project folder “…\LPC55S6x Dual-DMA.zip” for testing.

• Compile all projects by clicking ‘Compile (Ctrl+F7)’ or ‘Make (F7)’ from the quickstart menu.

Figure 8. Compile the project in IAR

• Starting the debugger by clicking ‘Download and Debug (Ctrl+D)’. This step compiles and flashes the code and starts the
debugger.

NXP Semiconductors
DMA verification

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 13 / 16

Figure 9. Download and Debug the project in IAR

• Terminal software, like tera-term.

4.3 Program verification
To run the code after downloading the DMA project, press the ‘RESET(S4)’ button. Choose the DMA transfer mode according to
the log information from the USB Virtual COM (VCOM) port.

Figure 10. DMA transfer mode selection menu

• Input ‘1’ to trigger DMA memory to memory transfer by software.

Figure 11. Memory to memory software trigger transfer success result

• Input ‘2’ to trigger DMA memory to peripheral transfer by hardware.

Figure 12. Memory to peripheral hardware trigger transfer success result

• Input ‘3’ to trigger DMA memory to peripheral transfer by software.

Figure 13. Memory to peripheral software trigger transfer success result

• Input ‘4’ to trigger DMA peripheral to memory by software.

Figure 14. Peripheral to memory transfer software trigger success result

NXP Semiconductors
DMA verification

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 14 / 16

5 Conclusion
The software example provided with this application note shows the basic configuration for LPC55S6x DMA block. Both DMA0
and DMA1 channels can be selected to transfer data according to the actual needs.

6 Revision history
Table 6 summarizes the changes since the initial release.

Table 6. Revision history

Rev. Date Substantive changes

0 14 February 2019 Initial release

1 26 February 2020 Figure 1 updated

2 27 October 2020 Updated LPC55(S)xx for LPC55S6x

NXP Semiconductors
Conclusion

LPC55(S)xx Dual-DMA Usage, Rev. 2, 10/2020
Application Note 15 / 16

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11,
Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone,
ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or
registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 10/2020
Document identifier: AN12351

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 LPC55(S)xx DMA Introduction
	2.1 DMA Introduction
	2.2 Dual DMA block overview
	2.3 Basic configuration of DMA block
	2.3.1 DMA block diagram description
	2.3.2 DMA requests and trigger multiplexers

	3 DMA configuration API
	3.1 DMA configuration API lists
	3.2 Data API example
	3.2.1 Memory to memory
	3.2.2 Memory to peripheral
	3.2.3 Peripheral to memory

	4 DMA verification
	4.1 Hardware design
	4.2 Software set-up
	4.3 Program verification

	5 Conclusion
	6 Revision history

